Bailout For The Other Guys

by Phil Rowe
Much has been written over the years about ejection seats and escape systems for pilots. But what about the other guys? How did the navigators, radio operators, flight engineers, crew chiefs, gunners and others get out? That's what we'll look at here in this historical perspective.

The problem of bailing out of airplanes hasn't gotten easier over the years. As planes flew faster and higher, the complications increased as well. Things were much simpler back in the early days.

In the combat airplanes of World War II, getting out for all crew members was a matter of jumping out of the nearest hatch, window or even the open bomb bay doors. If you had a parachute and could struggle to an opening, you had a chance. Airspeeds were relatively slow, few multi-place planes went faster than 350 knots.

Then came the high speed jet airplanes of the post-WWII period. Speeds increased markedly and altitudes reached 40,000 feet and higher. Getting out of planes in trouble became a real problem. If you could get to an open hatch and manage to jump, you ran the risk of being slammed against the fuselage or other part of the plane by the wind blast. It was difficult.

Jet fighter pilots were getting ejection seats to help them survive. Even bomber pilots found themselves sitting on similar upward firing seats that could clear the aircraft and then parachute them safely to ground. The story was different for the other crew members.

Among the early airplanes with ejection capabilities for navigators were the B-45 and B-47 medium bombers. The former, a straight-wing 450 mile-per-hour jet, featured a sideways ejection seat for the navigator sitting in the nose. When it was time to bail out, the B-45 navigator left via the port-side hatch as his seat threw him clear of the craft. Of course there was some danger of hitting the engine pod, but when it's time to leave, it's time to leave.

The B-47, Strategic Air Command's proud swept-wing wonder, offered the navigator a downward ejection seat as the primary escape. Of course that was of concern at low altitudes, but otherwise it gave him a chance of surviving. Spare crew members, like an Instructor Pilot or Instructor Navigator, didn't fare quite as well. Their options included dropping down the entry hatchway or jumping out of the navigator's hatch after he ejected clear.

The enormous B-52 Stratofortress heavy bombers came along and didn't offer a whole lot of improvement. The upper ejection seats for pilots and the electronic warfare officer were pretty good, but still the two navigators faced the prospect of ejecting downward. The low altitude bailout problems persisted. And spare crew members were no better off. The tail gunner had his own unique escape option. He merely severed the tail gun and jumped aft out the resulting hole in the rear. Actually, tail gunners had a good survival record.

Speed kept increasing. The hazards of getting clear of the airplane and surviving the wind blasts, which could break flailing arms and legs, grew worse. Improvements were needed.

Interim measures were taken. Some ejection seats featured pull-down curtains to protect the head and face against the terrific wind blasts. Restraints were added to keep arms and legs from flailing wildly. But those measures only helped the primary crew members who sat in ejection seats. The spare crew or other passengers were still on their own, hoping they could reach an open hatchway and jump to safety.

Bailing out at ever higher altitudes posed the additional problem of enduring the extreme cold aloft and the thin air which would not support breathing. Oxygen bottles solved the latter problem, while delaying parachute opening until lower altitudes were reached by free-fall helped the former. Automatic, aneroid-operated parachute opening mechanisms were a significant development.

Before we talk about supersonic bombers and the most advanced aircraft, we need to consider the crew members in large tanker and transport airplanes. Neither pilots nor other members of those crews were provided with ejection seats, up or down. Bailing out of many of these planes just wasn't a high priority matter, for being comparable to jet airliners and not as likely to suffer battle damage as bomber as fighters, they were deemed safer. Hence, no ejection systems were added. And besides, commercial airline passengers don't have any bailout options. Do they?

They, the designers and decision-makers, did make minimal provision for bailing crew members out, after a fashion. They adopted the tried and true approaches of telling people to jump from open hatches, doors and open aft cargo ramps. Some planes, like the KC-135 were still considered dangerous. Those flying gas stations, loaded with jet fuel, for themselves and planes they were to refuel in flight, were dangerous. And getting out was not easy.

Jet and turboprop cargo planes like C-130's, C-141's and C-5's relied on the bailout techniques of their earlier prop-driven ancestors. Crew members were expected to get to an available door or hatch and simply jump clear. Not a whole lot of progress has been made for these aviators. But then there was no discrimination between pilots and non-pilots either.

The greatest advances in crew escape systems for both pilots and others came with the B-58, F/FB-111 and the B-1. Supersonic craft, all, they incorporated escape and bailout systems that greatly improved survivability, all that is save for the B-1. The first two craft featured fully enclosed capsules or modules for single or grouped crew members.

The Mach 2 supersonic B-58 bomber originally came with upward ejection seats for each of the three tandem seated crewmen. There was no room for carrying spare crew members or passengers. The navigator and Defensive System Operator both had the same chance of surviving as did their pilot. But at the extreme speeds of 1400 miles per hour at Mach 2, something was needed. That came in the form of the Stanley Aviation capsule, a clamshell-like enclosed ejection system. All B-58's ( though not the two-pilot trainer versions ) were upgraded with escape capsules.

Supersonic F\FB-111 fighter-bombers featured an escape module to protect both of the crew members. Like the B-58, F\FB-111's had no room for spare crew members. On ejection, the entire cockpit unit or module separated from the fuselage and rocketed to safety. A parachute system gently lowered the module to earth.

The B-1 developers originally considered an escape module. It failed qualification tests and was dropped in favor of proven upward ejection seats, for both pilots and the two others of the primary crew. Spare crew members were left to their own devices in finding open hatches or doorways.

It's fair to say that many modern airplanes do provide bailout and escape systems for non-pilots, those on the primary crew. Spare crew and passengers are still left to fend for themselves. On cargo and tanker aircraft, all crew members must rely on decades-old bailout and escape methods. They must find an opening and jump.

Of course fighter pilots and members of one and two-man crew high performance craft are pretty well off, by comparison.

It's all a matter of trade-offs. Don't you think?